St Matthew's C of E Primary School

YEAR 5 CALCULATION POLICY

YEAR 5 MAIN PRINCIPLES

Scan QR codes to be directed to the MNP website with further information and videos.

What is maths mastery?

Teaching maths for mastery is a transformational approach to maths teaching which stems from high performing Asian nations such as Singapore. When taught to master maths, children develop their mathematical fluency without resorting to rote learning and are able to solve non-routine maths problems without having to memorise procedures.

Concrete, pictorial, abstract (CPA)

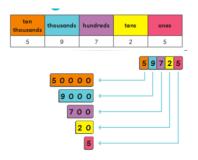
Concrete, pictorial, abstract (CPA) is a highly effective approach to teaching that develops a deep and sustainable understanding of maths. Developed by American psychologist, Jerome Bruner, the CPA approach is essential to maths teaching in Singapore.

Number bonds

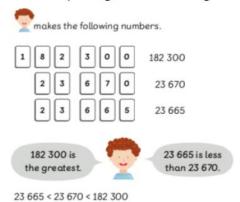
Number bonds are a way of showing how numbers can be combined or split up. They are used to reflect the 'part-part-whole' relationship of numbers.

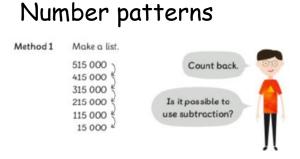
Bar modelling

The bar model method is a strategy used by children to visualise mathematical concepts and solve problems. The method is a way to represent a situation in a word problem, usually using rectangles.

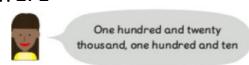

Fractions

In Singapore, the understanding of fractions is rooted in the Concrete, Pictorial, Abstract (CPA) model, where children use paper squares and strips to learn the link between the concrete and the abstract. At the heart of understanding fractions is the ability to understand that we're giving an equal part a name.

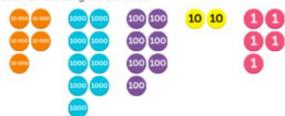



YEAR 5 PLACE VALUE

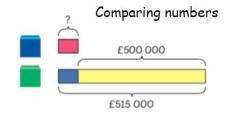
Value of digits - up to 1,000,000



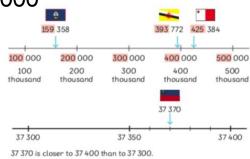
Comparing and ordering

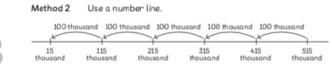


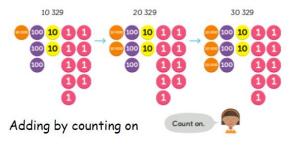
Place value counters

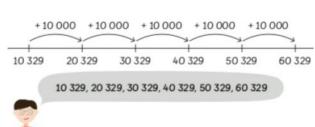


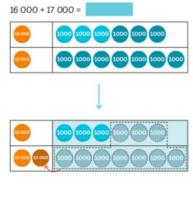
Show 59 725 using number discs.




Find the price of each object.

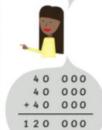

Rounding to the nearest 1000, 10,000, 100,000 __


Number lines



YEAR 5 ADDITION

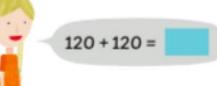
Using place value counters to support column addition



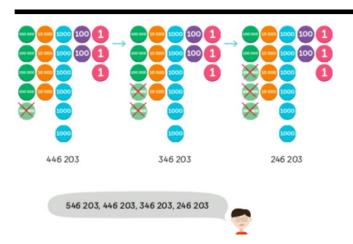
	16	000
+	1 7	000
	3	000
		T
	1 6	000
+	1 6 1 7	000

17 000

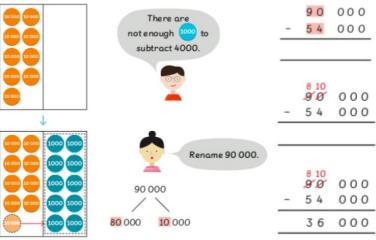
	A	В	С
1	Date	Trip	Fare
2	13 September	Airport to Hotel	150 000
3	14 September	Hotel to Office	40 000
4		Office to Hotel	45 000
5	15 September	Hotel to Office	43 000
6		Office to Hotel	42 000
7		Hotel to Restaurant	25 000
8		Restaurant to Hotel	21 000
9	16 September	Hotel to Office	46 000
10		Office to Airport	150 000
11			
12		Total for Taxi Fare	562 000


each amount to the nearest 10 000.

37 000 + 12 000


Rounding to add by estimate

Adding key facts to simplify



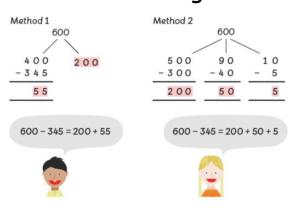
120 000 + 120 000

YEAR 5 SUBTRACTION

Subtracting by counting back

80 123 - 79 654 = Regrouping in 80 123 each place value 79 654 column 1 80 X23 Take 1 thousand 79 654 from 80 thousands to make 11 hundreds. 1 7 9 X12 80 X23 Take 1 hundred 79 654 from 11 hundreds to make 12 tens. 1 Take 1 ten from 7 9 HH 13 80 XZ3 7 9 65 4 12 tens to make 13 ones. 469 Check by

Bar Method


90,000 54,000 **36,000**

Place value counters to visually support column subtraction

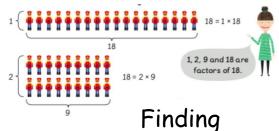
Learning mental strategies

Partitioning

YEAR 5

MULTIPLICATION

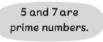
000000


Finding multiples

×	6	=	6			ı
						ŀ
						ı

2 × 6 = 12

3 × 6 = 18


1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24

finding factors

Prime Numbers

number	factors
5	1 and 5
7	1 and 7
4	1, 2 and 4
9	1, 3 and 9
6	1, 2, 3 and 6
8	1, 2, 4 and 8

4, 9, 6 and 8 are not prime numbers.

Common Factors

Find the common factors of 48 and 64.

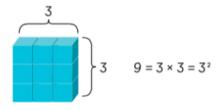
48 = (1) × 48

 $64 = 1 \times 64$

 $48 = 2 \times 24$

64 = 2 × 32

 $48 = 3 \times 16$


64 = 4 × 16

48 = (4) × 12

64 = (8) × 8

 $48 = 6 \times 8$

The common factors of 48 and 64 are 1, 2, 4, 8 and 16.

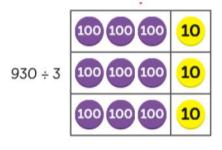
Square and cube numbers

 $27 = 3 \times 3 \times 3 = 3^3$

27 is a **cube**.

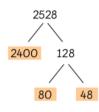
Multiplying by 10, 100, 1000

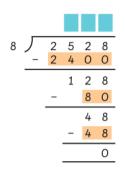
12×10	12×100	12 × 1000
10 10	100 100	1000 1000
10 10	100 100	1000 1000
10 10	100 100	1000 1000
10 10	100 100	1000 1000
10 10	100 100	1000 1000
10 10	100 100	1000 1000
12 × 10 = 12 × 1 ten	12 × 100 = 12 × 1 hundred	12 × 1000 = 12 × 1 thousand
= 12 tens	= 12 hundreds	= 12 thousands



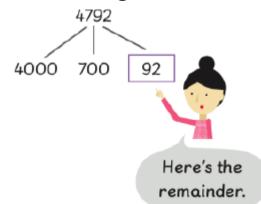
YEAR 5 DIVISION

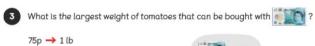
Using place value Counters




Bar Method

	930	
310	310	310

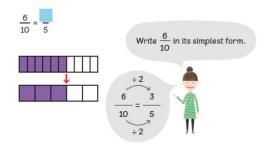

Dividing using long division



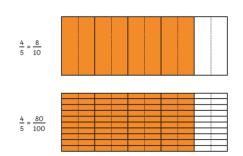
Partitioning

Using known facts

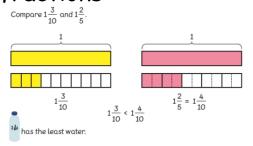
mass	price	
1 lb	75p	
2 lbs	2 × 75p = 150p	
4 lbs	4 × 75p = 300p	
6 lbs	6 × 75p = 450p	

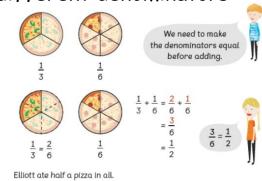

$$4 \overline{)1 0 8} \longrightarrow 4 \overline{)1 0^{2}8}$$

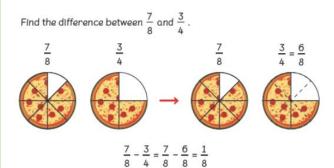
Short Division

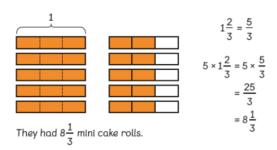

$$3 \int 5 \quad 1 \longrightarrow 3 \int 5 \quad 2 \int 1$$

YEAR 5 FRACTIONS

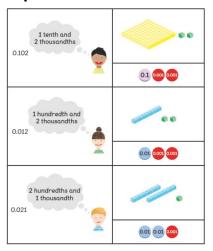

Simplifying Fractions


Equivalent Fractions

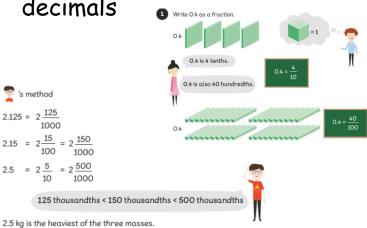

Comparing and ordering fractions


Adding fractions with different denominators

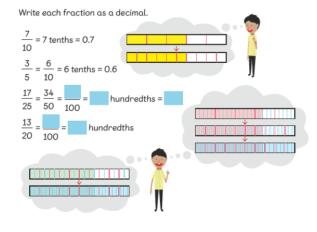
Subtracting fractions with different denominators

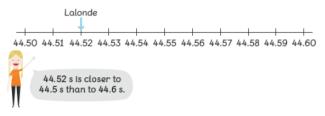


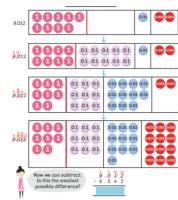
Multiplying Fractions



YEAR 5 DECIMALS


Place value counters up to thousandths


Write Fractions as decimals



Adding and subtracting decimals

Rounding Decimals

Round these times to the nearest tenth of a second.

